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e Introduction: Count data in ecology and spatial dependence
e Generalized Linear Modeling (GLM) framework

e Spatial correlation models

e Examples: North American BBS data

e Detection bias in animal surveys

Introduction

Introduction

Ecology: The study of spatial and temporal variation in abundance

A general theme of ecological studies: Collect spatially referenced
counts, y(s), with the goal of making inferences about “abundance”

For example,
e Characterize the spatial distribution of a population

e Map occurrence of a species — “range map”

e Evaluate landscape factors that influence variation in abundance

Data: y(s;) = y; are spatially referenced counts, e.g., number of birds counted
at site s; (a point, quadrat, transect)

Genesis of Spatial Dependence —
e Omitted habitat covariates
e Demographic processes
— Recruitment, dispersal, etc..
e Interactions between individuals/species

— Predation, competition
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Objectives

Considerations for Modeling Counts

What do we do with spatial models of abundance?
e Mapping/prediction or simple description
e Small area estimation, inference
e Shrinkage estimation of model parameters

e “Honest” estimation of covariate effects

Why not just use a kriging-type model?
e counts are positive valued
e counts are discrete

e mean related to variance (empirically)

— Route SD vs. mean, house
finch (routes > 10 years)

Route SD
4 80 80 100
P

Kriging is a linear procedure, for normally distributed data that does not
respect these features.

Generalized Linear Models (GLMs):

Elements of Generalized Linear Models (GLMs)

Classical statistics deals with normal distributions and linear models.
e y; ~ Normal(p;, o%)
o 1 = By + B,

Kriging is also a normal, linear procedure

GLMs (Generalized Linear Models) represent an analogous class of models
for non-normal data

A probability model for the observations:
o f(pi,0)
— pi = Ely;]
— @ = a variance parameter
Common choices of f for count data
— Poisson

— Binomial
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Generalized Linear Models (GLMs)

Poisson Regression

Modecling covariates cffects:
J
hElyl) = X Biij
=
instead of (for normal data)
J
E[?JJ = '21 5]'1’1']'

=

e () is called the link function (it links the mean of f(-) to the linear
function of covariates)

— Poisson: log(u;)

— Binomial: log(;/(1 — ;)

Probability model for the data:
y; ~ Poisson(p;)
i 1s the mean of y; at location s;
log(i) = Bo + B

x; = a covariate, describing landscape or habitat structure

GLMs for Spatial Data

Binomial counts

Introduce a spatially indexed random effect, z;:
J
h(pi) = '21 Bixii + 2
=

e z; is a spatially correlated random effect
e Exploit conventional Gaussian spatial process models for z; (kriging)

e Several possibilities are described shortly

If y is the number of “successes” in T" independent Bernoulli trials (“coin flips™).
then y has a binomial distribution

o 1" = sample size

e parameter m = “success probability”

Binomial data examples

— Nest success/productivity data

— Capture-recapture or band recovery data

— Occupancy data (y; units occupied out of T;)
— Harvest success
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Binomial counts

Poisson Counts

Goal: model variation in 7;

Logistic regression model:

j=

J
log(mi/(1 —m;)) = 21 BT + 2

Aggregate a Poisson point process (equal area units)
y; ~ Poisson(p;)
y; results from counting (unique) individuals in space

Goal: model variation in p;

Log-linear model:

J
log(i) = '21 BjTij + 2
iz

Spatial Models for z —

1. Classical or Direct Construction

Assume that z; = z(s;) is a Gaussian spatial process:

e z; ~ Normal
L] E[ZJ =0
2

o Var(z] =0

o Corr(z, zj) = ko(||s;i — sj|])

Joint normality of z = (z1, 29, ..., 2,):

Z,x1 ~ Normal(0, X(0))

There are a number of ways to specify 3(6)

“Kriging for counts” A direct specification of a joint distribution for the spatial
process, z($)

Specify a model for the correlation between z(s) at any two locations:
Corr(z(si), 2(s5)) = ko(lls: = s;ll)
e.g., exponential decay —
k@(S,S/> _ e*HS*s/H/H
This function ky(s, s’) “fills-in” the n x n elements of 3(6):
Z,x1 ~ Normal(0, X(6))

Estimation /prediction requires repeated mathematical operations on 33(6)
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Example: Range Mapping

Kriging for Counts

e Carolina Wren counts from the BBS
e abt. 1000 routes
e Goal is to make a relative abundance/range map

«— log(mean) route count
(across years)

3(0) is 1000 x 1000 and does not yield to kriging-like estimation and pre-
diction.

Diggle, P.J., J.A. Tawn and R.A. Moyeed. 1998. Model-based geostatistics.
Journal of the Royal Statistical Society, Ser. C.

2. Kernel Smoothing/(Process Convolution) Con-
struction

Express z(s) as a linear combination of iid “random effects”

R
£(5) = 3 wifr, o)
=
where
a(r) ~ Normal(0, o)

e wy(r, ) is a kernel centered at r
“kernel” = weighting function

e 2 an average of “noise” —
z(s) is a weighted average of 7id noise a(r;);j =1,2,..., R.

e A classical mixed model (Laird and Ware; PROC MIXED)

e R<<n

Kernel Smoothing/Convolution Construction

e Fquivalence between this method and “kriging”, i.e., a precise relationship
between the choice of wy(+) and the correlation function.

e This is morc computationally cfficient in large problems. Do not have to
operate on X(6),,x,.

e Higon, D. 1998. A process-convolution approach to modeling temperatures
in the North Atlantic Ocean. Environmental and Ecological Statistics
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Example: Range Mapping

e Carolina Wren counts from the BBS

e abt. 1000 routes

e Goal is to make a relative abundance/range map
e Method: Gaussian kernel convolution model

— log(mean) route count
(across years)

« Data locations and
grid of “support points” —
Gaussian kernel centers

Estimated spatial process:

3. Lattice models

Usually used when data have discrete or areal support. e.g., areal measure-
ments: counties, geographic strata, etc..

Conditional autoregression (CAR):

Zi=p Z WijZj + €
Jei
{w;;} = W is the adjacency matrix.
e Os and 1s indicating neighbors

e length of boundary

o “average distance” between cells
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Lattice models for non-lattice data

Example: Spatial Variation in Bobolink Counts

If data locations do not form a natural lattice, then make one up:

\ e

¢

1

o A~

T
//7
\ AN - . /L<\/ &/%A

s

log(p) = ul + Hz

o pnisn x1
e 7 is px 1 CAR process
eHisnxp

H associates each observation

~ with one or more of the p
random effects, which are ar-
ranged on a lattice

BBS Bobolink counts, arbitrary grid for embedded CAR model

e Species: Bobolink
e BBS route counts in the upper-midwest (a physiographic stratum)
e Scveral habitat covariates thought to influence abundance

e CAR model with incidence adjacency matrix

Data Locations Data
L J
100 or so routes in upper midwest
y; = count of bobolinks on BBS route 4, located at s;.
log(count)
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Predictions

Estimation and Implementation

0.96
074
052
030
0.07
-0.15
-037
-059
-0.81
-1.03
-1.25

e Markov chain Monte Carlo
geoR,geoRGLM add-on R libraries
PROC MIXED/GLIMMIX for some models

WinBUGS for all models described here

Abundance and Detectability

Abundance and Detectability

In Ecology, we have an acute inability to observe the state variable of interest
in many problems: Abundance, or occurrence

N(s) = # of animals in population s (population size)

Observe a sample count, y(s) < N(s)

Binomial Observation Model:

y(s) ~ Binomial(N(s), p)

y(s) = observed count
p = ‘“detection probability”

e Detection is important because y is a “biased estimate” of N
e p can vary in response to many factors (e.g., intensity, env. conditions)
e Variation in y is not just due to variation in N.

e But (variation in) N is the object of inference
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Simple Count Surveys (Binomial counts)

Abundance and Detection

When detection is imperfect, N(s) is not distinguishable from p (they are
confounded). For example, the model consisting of:

(1) y(s) ~ Binomial(N(s),p) and

(2) N(s) ~ Poisson(j(s))

is equivalent to the model

y(s) ~ Poisson(pu(s))

Thus, models for y(s) describe variation in the product pgu(s). This is insuf-
ficient for some important inference problems.

Therefore, much effort has been directed toward developing alternative sam-
pling protocols/methods that allow variation due to the detection process to be
decoupled from variation in abundance.

e capture-recapture

e double or multiple observer sampling

e distance sampling

e “removal” methods
Most methods yield a multivariate count statistic y that has a multinomial
sampling distribution —

y|N ~ Multinomial(N; 7)

Differences among protocols arc manifest in paramcterization of

Example of Multinomial Observation Models

The General Hierarchical Model

A double-observer protocol: Two observers independent record observations
of individuals and, after the fact, “reconcile” their observation lists. This yields
an encounter history for each individual of the form:

observed by both observers
observed by 1st

observed by 2nd

not observed

11
10
01
00

Data are encounter history frequencies—nyy, nig, no; and ngy (missing data),
which have a multinomial distribution, with cell probabilities 711, 710, 701, 700-

These are functions of detection probability p; (1st observer) and py (2nd ob-
server).

1. Multinomial Likelihood —
y|N ~ Multinomial(N; 7r)

2. Abundance model —
N; ~ Poisson(i;)

3. Model for the Poisson mean

log(pi) = x;b + 2(s;)

4. The spatial process — Spatial dependence is induced through the correlated
random effect, z(s).
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Summary

e Many ecological studies yield data that are counts: of animals, or Bernoulli
trials

e Poisson/Binomial GLMs with spatially correlated random effects
1. Kriging-type models

2. Regression-on-noise (“convolution”) formulation
3. Lattice models (CAR)
e Abundance/occurrence processes, detection bias: yields a hierarchical model

wherein the spatial model governs the latent (unobservable) abundance pa-
rameter, N(s).
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